Special Topics:Computational GeometryQhull cone by Brad Barber

The convex hull is the smallest convex set containing a set of points. For example, a cube is the convex hull of the cube's vertices. This cone is the convex hull of two 20sided polygons and a cospherical point. It was generated by Qhull.
This cone illustrates a unique feature of Qhull. The program handles roundoff errors due to floating point arithmetic. If adjacent facets are nonconvex, Qhull merges one of the facets into a neighbor. For example, the 20sided facet and squares are merged facets. The result is an inner and outer approximation to the convex hull.
If exact arithmetic was used instead of floating point arithmetic, all of the facets would be noncoplanar triangles. This is because the point coordinates are floating point numbers. There were numeric errors in creating the regular polygons and additional errors in rotating the points.
How to make it: rbox r s 20 Z1 G0.2  qhull s C0 QR1 G >a
Image created: April 1995
Copyright © April 1995 by The Geometry Center, Univerity of Minnesota. All rights reserved.
For permission to use this image, contact permission@geom.math.uiuc.edu.
External viewing: small (100x100 2k gif), medium (500x402 17k gif), or original size (1274x1023 140k tiff).
Comments to: webmaster@www.geom.uiuc.edu
Created: Sat May 22 23:17:50 CDT 1999

Last modified: Sat May 22 23:17:50 CDT 1999