Divergence at a Point

In this lab we will consider the vector field given by the equations:

dx/dt = y
dy/dt = -x^3 + x + (3/2)x^2 + y - x^2*y

The phase portrait of this vector field looks like Figure 1.

Figure 1: Phase portrait and equilibria.

Let f denote the right-hand side of this system,
f(x,y)=(y, -x^3 + x + (3/2)x^2 + y - x^2*y),
and recall that


Question #1

  1. Compute the location of equilibria for this vector field.
  2. Compute div(f).
  3. Evaluate div(f) at each equilibrium.
  4. Based on the previous computation, what do you think is the stability type of each equilibrium? How confident are you?

Next: Divergence over a Region
Previous: Introduction

Frederick J. Wicklin <fjw@geom.umn.edu>
Brian Burt<burt@geom.umn.edu>

Document Created: Wed Jan 25 CST
Last modified: Tue Mar 14 10:27:19 1995