Journal Articles

  1. R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations 14 (1973), 70-88.
  2. R. McGehee & K. Meyer, Homoclinic points of area-preserving diffeomorphisms, Amer. J. Math. 96 (1974), 409-421.
  3. R. McGehee, Triple collision in the collinear three-body problem, Inventiones Math. 27 (1974), 191-227.
  4. R. Armstrong & R. McGehee, Coexistence of two competitors on one resource, J. Theor. Biol. 56 (1976), 449-502.
  5. R. Armstrong & R. McGehee, Coexistence of species competing for shared resources, Theor. Pop. Biol. 9 (1976), 317-328.
  6. R. McGehee & R. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion, J. Differential Equations 23 (1977), 30-52.
  7. R. Easton & R. McGehee, Homoclinic phenomena for orbits doubly asymptotic to an invariant three sphere, Indiana U. Math. J. 28 (1979), 211-240.
  8. R. Armstrong & R. McGehee, Competitive exclusion, The American Naturalist 15 (1980), 151-170.
  9. R. McGehee, Double collisions for a classical particle system with nongravitational interaction, Comment. Math. Helvetici 56 (1981), 524-557.
  10. D. G. Aronson, M. A. Chory, G. R. Hall, & R. P. McGehee, Bifurcations from an invariant circle for two-parameter families of maps of the plane: a computer-assisted study, Comm. Math. Phys. 83 (1982), 304-354.
  11. D. Aronson, R. McGehee, R. Aris, & I. Kevrekidis, Entrainment regions for periodically forced oscillators, Phys. Rev. A 33 (1986), 2190-2192.
  12. R. McGehee, Von Zeipel's theorem on singularities in celestial mechanics, Expositiones Mathematicae 4 (1986), 335-345.
  13. R. McGehee, Charles C. Conley 1933-1984, Ergodic Theory and Dynamical Systems 8* (1988), 1-7.
  14. R. McGehee, Attractors for closed relations on compact Hausdorff spaces, Indiana U. Math. J. 41 (1992), 1165-1209.
  15. R. McGehee & B. Peckham, Resonance surfaces for forced oscillators, Experimental Math. 3 (1994), 223-244.
  16. R. McGehee & Evelyn Sander, A new proof of the stable manifold theorem, Z. angew. Math. Phys. 47 (1996), 497-513.
  17. R. McGehee & B. Peckham, Arnold flames and resonance surface folds, International Journal of Bifurcation and Chaos 6 (1996), 315-336.

Articles in Conference Proceedings

  1. R. McGehee, Parabolic orbits in the three-body problem, Dynamical Systems (M. M. Peixoto, ed.), Academic Press, New York, 1973, pp. 249-254.
  2. R. McGehee, The stable manifold theorem via an isolating block, Symposium on Ordinary Differential Equations (W. Harris & Y. Sibuya, eds.), Lecture Notes in Mathematics 312, Springer-Verlag, Berlin, 1973, pp. 135-144.
  3. R. McGehee, Triple collision in Newtonian gravitational systems, Dynamical Systems, Theory and Applications (J. Moser, ed.), Lecture Notes in Physics 38, Springer-Verlag, Berlin, 1975, pp. 550-572.
  4. J. Mather & R. McGehee, Solutions of the collinear four-body problem which become unbounded in finite time, Dynamical Systems, Theory and Applications (J. Moser, ed.), Lecture Notes in Physics 38, Springer-Verlag, Berlin, 1975, pp. 573-597.
  5. R. McGehee, Singularities in classical celestial mechanics, Proceedings of the International Congress of Mathematicians Helsinki 1978, pp. 827-834.
  6. D. G. Aronson, M. A. Chory, G. R. Hall, & R. P. McGehee, A discrete dynamical system with subtly wild behavior, New Approaches to Nonlinear Problems in Dynamics (P. Holmes, ed.), SIAM, 1980, pp. 339-359.
  7. D. G. Aronson, M. A. Chory, G. R. Hall, & R. P. McGehee, Resonance phenomena for two parameter families of maps of the plane: uniqueness and nonuniqueness of rotation numbers, Nonlinear Dynamics and Turbulence (Barenblatt, Iooss, & Joseph, ed.), Pitman, Boston, 1983, pp. 35-47.
  8. R. McGehee, A Note on the Moser-Hald Variation of Newton's Method, Analysis, et cetera: Research Papers Published in Honor of Jurgen Moser's 60th Birthday (P. Rabinowitz & E. Zehnder, eds.), Academic Press, Boston, 1990, pp. 495-499.
  9. R. McGehee & B. Peckham, Determining the Global Topology of Resonance Surfaces for Periodically Forced Oscillator Families, Proceedings of the Workshop on Normal Forms and Homoclinic Chaos, Fields Institute Communications 4, AMS, 1995, pp. 233-251.

Books Edited

  1. M. R. Herman, R. McGehee, J. Moser, & E. Zehnder, Charles Conley Memorial Volume, Cambridge University Press, Cambridge, 1988.
  2. R. McGehee & K. Meyer, Twist Mappings and their Applications, The IMA Volumes in Mathematics and its Applications 44, Springer-Verlag, Berlin, 1992.

Unpublished Reports

  1. R. McGehee, A nonsingular list structure for multiprocessor systems, CPT Research Report No. 0482 (1984).
  2. J. Guckenheimer & R. McGehee, A proof of the Mandelbrot N-squared conjecture, Institut Mittag-Leffler Report No. 15 (1984).
  3. R. McGehee, Some metric properties of attractors with applications to computer simulations of dynamical systems, October, 1988.

Last modified: March 22, 1998.