Pythagoras (569-500 B.C.E.) was born on the island of Samos in
Greece, and did much traveling through Egypt, learning, among
other things, mathematics. Not much more is known of his early
years. Pythagoras gained his famous status by founding a group,
the Brotherhood of Pythagoreans, which was devoted to the study
of mathematics. The group was almost cult-like in that it had
symbols, rituals and prayers. In addition, Pythagoras believed
that "Number rules the universe,"and the Pythagoreans gave
numerical values to many objects and ideas. These numerical
values, in turn, were endowed with mystical and spiritual
qualities.
Legend has it that upon completion of his famous theorem, Pythagoras sacrificed 100 oxen. Although he is credited with the discovery of the famous theorem, it is not possible to tell if Pythagoras is the actual author. The Pythagoreans wrote many geometric proofs, but it is difficult to ascertain who proved what, as the group wanted to keep their findings secret. Unfortunately, this vow of secrecy prevented an important mathematical idea from being made public. The Pythagoreans had discovered irrational numbers! If we take an isosceles right triangle with legs of measure 1, the hypotenuse will measure sqrt 2. But this number cannot be expressed as a length that can be measured with a ruler divided into fractional parts, and that deeply disturbed the Pythagoreans, who believed that "All is number." They called these numbers "alogon," which means "unutterable." So shocked were the Pythagoreans by these numbers, they put to death a member who dared to mention their existence to the public. It would be 200 years later that the Greek mathematician Eudoxus developed a way to deal with these unutterable numbers.
Euclid, in his book The Elements, presents a proof of the Pythagorean Theorem.
It is known that the Egyptians used a knotted rope as an aid to constructing right angles in their buildings. The rope had 12 evenly spaced knots, which could be formed into a 3-4-5 right triangle, thus giving an angle of exactly 90 degrees. Can you make a rope like this? Now use your knotted rope to check some right angles in your room at school or at home.
tiles
Click here for an explanation of the proof.
The Chinese used the Pythagorean Theorem as far back as 1000 B.C.E. Can you figure out the method of proof used in the figure below?
Click here
In the 17th century, Pierre de Fermat(1601-1665) investigated the following problem: For which values of n are there integral solutions to the equation
We know that the Pythagorean theorem is a case of this equation when n = 2, and that integral solutions exist. Fermat conjectured that there were no solutions when n was greater than 2. He did not leave a proof, though. Instead, in the margin of a textbook, he wrote that he knew that this relationship was not possible, but he did not have enough room on the page to write it down.
His conjecture became known as Fermat's Last Theorem. This may appear to be a simple problem on the surface, but it wasn't until 1993 that Andrew Wiles of Princeton University finally proved the theorem.
Kramer, Edna E., The Main Stream of Mathematics From the Earliest Beginnings to the
Age of Relativity,
New Jersey, The Scholar's Bookshelf, 1988.
Loomis, Elisha Scott, The Pythagorean Proposition, Washington, D.C.,
The National Council of Teachers of Mathematics, Inc., 1968.
Pearson, Helen and Lightner, James, Geometry, Annotated Revised Edition,
Lexington, Massachusetts, Ginn and Company, 1984.