Each of these applets uses the WebEQ parameter
<param name=style value=display>
\int^1_\kappa \left[\left(1-w^2\right)\left(\kappa^2-w^2\right)\right]^{-1/2} dw = \frac{4}{\left(1+\sqrt{\kappa}\right)^2} K \left(\left(\frac{1-\sqrt{\kappa}}{1+\sqrt{\kappa}}\right)^2\right)
\mathop{grd} \phi(z) = \left(a+\frac{2d}{\pi}\right) v_\infty\, \widebar{f'(z)} = v_\infty \left[ \pi a + \frac{2d}{\pi a + 2dw^{-1/2}(w-1)^{1/2}} \right]^-
-\sum^n_{m=1} \left( \sum^\infty_{k=1} \frac{ h^{k-1} }{\left(w_m-z_0\right)^2} \right) = \sum^\infty_{k=1} s_k h^{k-1}
Copyright © 1996-1997 by The Geometry Center. All rights reserved.